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Superdiffusivity due to resource depletion in random searches
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A B S T R A C T

Animal search patterns are governed by the various movement strategies undertaken when animals
encounter stimuli. The stimuli caused by resource growth and depletion can modify search patterns due
to the need to finding resources. In this paper, we investigate the influence of resource depletion on the
dynamics of dispersal of a population which is related to diffusion or anomalous diffusion. Our approach
is to develop a population level model using partial differential equations that takes into account rules for
movement based on the resource levels. Through numerical analysis, we show that the population
dispersal patterns depend on the resource depletion, with superdiffusive spread in cases where the
depletion rate (as given by high consumption and low replenishment) is high. This has the potential to
increase searching efficiency.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Consider an animal population that explores the environment
by moving to nearby resource locations while avoiding places with
resources depletion. The goal of each animal is to utilize the
resource while minimizing energy output and maximizing search
efficiency. To save energy the animal goes to nearby locations and,
to increase efficiency in finding the resource, it prefers places
where the resources are higher. In this way, the animal has to (i)
locate nearby patches and (ii) avoid places with exhausted
resources. For the first point, we consider a strategy of movement
based on a localized dispersal kernel. For the second point, we
consider a strategy where animals avoid places with low resource
levels.

Studies of resource depletion and animal movement have
questioned how the resource dynamics interact with the explora-
tion patterns. Some studies deal with mechanistic models, often
using individual based simulations (Hinsch et al., 2012; Reluga and
Shaw, 2015; Avgar et al., 2016), while others include field
observations (Lourenço et al., 2010; Merkle et al., 2014). Other
approaches assume that individuals can use some marker other
than resource levels, for instance spatial memory (Ramos-
Fernandez et al., 2004; Winter, 2005; Mueller and Fagan, 2008;
Van Moorter et al., 2009; Merkle et al., 2014; Berbert and Fagan,
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2012; Vincenot et al., 2015; Grünbaum, 2012; Bracis et al., 2015;
Potts and Lewis, 2016) or greed (Bhat et al., 2017a,b), to govern
movement decisions.

In this paper, we define a mathematical model to analyze how
the dynamics of resource depletion can induce an anomalous
diffusion in localized random searches. The paper is organized as
follows. The following subsections of this introduction present the
rules and dynamics for movement and resource depletion.
Section 2 shows the methods used, including the derivation of a
non-dimensional model and its numerical analysis. In Section 3 we
present our results. Finally, in Section 4 we discuss the results and
present perspectives on future work. The Appendices contain the
detailed development of our model as well as a linear stability
analysis.

1.1. Movement and resource rules

Assume a disordered one-dimensional space explored by a
population of many individuals who consume a resource and move
randomly with a bias towards locations with high resource and
away from locations with no or low resource. The resource
depletion is established according to the rules of movement in the
landscape. As individuals visit a location, they consume the
resources in this location at a given rate.

Briefly, the individuals of a population perform a localized
random walk, with a bias towards sites with higher resource levels.
At each time interval Dt the individual must choose a single site.
Per capita resource consumption occurs at rate a per unit of
resource and the replenishment occurs exponentially in time. This
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means that the resource recovers at a rate 1/m according to a
Poisson process, so the probability of recovering a resource
location in time step of length Dt is approximately Dt/m. After the
individual consumes the resource location x at time t1, the
probability of resource replenishment at location x at time t > t1, is
1 � exp[(t � t1)/m].

1.2. Resource dynamics

Resource is consumed at rate a when an individual of a
population visits a location and it recovers exponentially in time
with rate 1/m. We denote u(x, t) to be the probability density
function for the population and r(x, t) to be the expected resource
density distribution at location x and time t. Then the resource
density at x after a time step of size Dt is given by (i) the r at x at
time t, (ii) the consumption of r during time Dt, and (iii) the
recovery of r during time Dt. These three elements are included in
the following equation:

(1)

Rearranging the terms, dividing by Dt and taking the limit of
Dt ! 0, we obtain

@r
@t

¼ �au r þ ð1 � rÞ
m

: ð2Þ

The first term on the right models the depletion, and the second
models the replenishment to an asymptotic level of 1. We have
dropped the (x, t) dependency for notational convenience, but keep
in mind that resource and population densities depend on both
space and time.

1.3. Movement dynamics

The probability density function for the population, u(x, t), is
dependent on the movement rules for individuals. To provide an
expression for the dynamics of u(x, t) we consider the probability of
moving from a site at y to another at x, which is proportional to (i)
the dispersal kernel K(y � x;Dt) during the localized random search
and to (ii) the probability that the site x has the resource r. A
detailed development of this density distribution, given in
Appendix A, shows that u(x, t) evolves approximately according to:

@uðx; tÞ
@t

¼ � @
@x

uðx; tÞ 2M2
@
@x

log½rðx; tÞ� � M1

� �� �
þ M2

@2uðx; tÞ
@x2

:

ð3Þ
where M1 is the infinitesimal first moment of the dispersal kernel
describing the bias, and M2 is the infinitesimal second moment of
the dispersal kernel, in this case, the diffusion coefficient. Note that
in the advective term of this equation there is a nonlinear coupling
due to the resource density r. This is in terms of advection up
gradients of log[r(x, t)]. Observe that @x log[r(x, t)] is a measure of
the proportional change in resource with space, since it represents
the relative variation of resource with space, @x(r)/r.

The advection term with a log function appears from the
normalization used in the transition probability for the random
walk (see Appendix A). This normalization is necessary, since
the transition probability varies at each step due to the resource
consumption/recovery. Othmer and Stevens (1997) also have
developed a similar normalization to define the dispersal of
bacteria by chemotaxis. In that case, they have obtained partial
differential equations for population of bacteria that move
according to local environmental factors. Their work suggests
that this kind of advection with a log function reveals that the
bacteria possess a perception region to move (and to aggregate).
In our model, it also shows that the individuals of a population
can perceive the environment and use this information to
decide their movement, in our case, moving towards locations
with higher resources and avoiding places with resource
depletion.

It is worth mentioning that, in our model, we are considering
the movement but not the population growth dynamics. Thus, the
total population size is constant on an infinite domain, or on a finite
domain, providing there are zero-flux boundary conditions:
u(2M2d(log(r))/dx � M1) + M2du/dx = 0 at x =� L/2 and L/2 where L
is the length of the domain.

2. Methods

2.1. Nondimensional system

Our model depicted by Eqs. (2) and (3) specifies how the
resource and the population vary with time. Before we analyze the
system, it is convenient to reduce the number of parameters
through adimensionalization. Therefore, we introduce the
variables

x̂ ¼ xffiffiffiffiffiffiffiffiffiffiffi
mM2

p
t̂ ¼ t

m
û ¼ u

ffiffiffiffiffiffiffiffiffiffiffi
mM2

p
:

ð4Þ

Thus, Eqs. (2) and (3) become

@r
@t

¼ �a
ffiffiffiffiffiffiffi
m
M2

r
ur þ ð1 � rÞ; ð5Þ

@u
@t

¼ � @
@x

u 2
@
@x

logðrÞ � M1

ffiffiffiffiffiffiffi
m
M2

r� �� �
þ @2u
@x2

; ð6Þ

where we have dropped the “hat” from x, t and u for convenience of
notation. Observe that, now, the time scale is given by the resource
depletion rate 1/m and the term related to diffusion now has
unitary value. Since we focus on the effects of resource depletion
on the population dispersal, we neglect the conventional advection
by considering M1 = 0. Note that, if M1 is nonzero, there will be a
bias to one direction, and it will hide the resource depletion effects
we want to analyze. Therefore, we can consider only the effect of
one parameter:

b ¼ a
ffiffiffiffiffiffiffi
m
M2

r
; ð7Þ

which quantifies the rate of resource depletion. Thus, our model is:

@r
@t

¼ �bur þ ð1 � rÞ; ð8Þ

@u
@t

¼ �2
@
@x

u
@
@x

logðrÞ
� �

þ @2u
@x2

; ð9Þ

on a domain x 2 (�L/2, L/2) with boundary conditions 2udr/dx � du/
dx = 0 at x =� L/2 and L/2. We analyze these equations to
understand the population dispersal dynamics dependence on
resource depletion. We have also undertaken an analytical
approach to evaluate the stability of spatially homogeneous
solutions, which is in the Appendix B. In the next section we
show our numerical analysis.
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2.2. Numerical analysis

To numerically analyze the model, we used the MATLAB built-in
solver “pdepe”. Because the patterns we found are unusual, we also
validated the results with our own implementation using a finite
difference scheme and the C++ language (not shown). We varied
time t from 0 to 1 with time step Dt = 0.01, the rate of resource
depletion b from 0.1 to 100. The one-dimensional space x 2 (�5, 5)
was chosen to be large enough to avoid edge effects, with grid size
of 10�4. The initial condition for the population u(x, 0) was given as
a top hat function of height 10 and width 0.1 centered at the origin

(with
R 5
�5 uðx; 0Þdx ¼ 1), and 1 for resource (r(x, 0) = 1).

The quantity used to evaluate the population spread was the
reach of the population xp(t), defined as the distance at which the
population reached a lower threshold, which we choose to be
u(xp(t), t) = 2 �10�5. Assuming symmetry of the population
distribution with respect to the center, we numerically evaluate
xp(t) > 0. To compare with diffusive processes, we also obtained
numerical solutions for the diffusion equation (@tu = @xxu) and its
population reach xp(t).

3. Results

The pattern of spatial spread with resource depletion is
significantly different than that for spread with simple diffusion.
Fig. 1. Population density u(x, t) for (a) t = 1 and b = {1, 10, 100}; and (b) b = 100 for 
Fig. 1(a) shows the numerical solution for the population u(x, t) for
t = 1 and b = {1, 10, 100}, where b = 0 stands for diffusion only.
Observe that both the reach and the spread pattern of the
population distribution depends on b. For a small value of b, the
population is concentred near the origin, but as this parameter
increases, the spread also increases. We also observe the
appearance of peaks in the edge of the distribution. We refer to
them as advective resource driven peaks and they occur due to the
advection induced by the resource r term from Eq. (9). The
symmetric pattern, with respect to the origin, reveals that there is
no other advection process inducing a bias in one direction of this
spread. Comparing the population distribution for b = 1, 10 and 102

with the case for only diffusion (b = 0), we note that for small
values of b, the population disperses in a manner similar to
diffusion. As b increases, the advection due to the resource
dynamics becomes an important factor. Fig. 1(b) shows how the
population distribution varies with time for b = 100. We also show
the resource density r with population density u in Fig. 1(c).

Observe that the population reach xp is a concave down function
of time, as shown in Fig. 2. The reach xp shows a power-law
dependence on time, as one can see in the in-set plot in Fig. 2. We
fitted these curves for t > 0.1 to find the characteristic exponent m,
so that

xp / tm: ð10Þ
a few values of time. (c) Population and resource densities for t = 1 and b = 100.



Fig. 2. Population reach xp as function of time t for different values of b. Inset: Same
data xp as function of time t in a log-log scale, showing the power-law behavior.
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Normal diffusive processes are characterized by a Gaussian
distribution for the population density. The standard deviation of
this distribution, which can represent the distribution reach,
increases proportional to

ffiffi
t

p
. Thus, for diffusion m = 0.5. In our

model, we have m 2 (0.5, 0.6), which reveals the super-diffusive
nature of this dynamics for large values for the strength of resource
depletion b.

Fig. 3 shows the characteristic exponent m dependence on b.
The model that best fits this curve is

mðbÞ ¼ m0 þ a log
b
c
þ 1

� �
; ð11Þ

where m0 = 0.5 is the characteristic exponent for diffusion, a = 0.135
measures the sensitivity to resource depletion effects, and c = 30 is
a scale factor. Using this equation in Eq.(10) yields

xp / tm0þa logðb=cþ1Þ: ð12Þ
To understand the effect of b on the dispersal, we considered four
cases for our model dynamics:

1. b = 0: therefore xp/ tm0, and the population disperses only by
Gaussian diffusion.
Fig. 3. Characteristic exponent m as function of b.
2. b � c: in this case a log(b/c + 1) � ab/c � 1. Therefore xp/ tm0

and the population disperses mostly by diffusion.
3. b � c: thus a log(b/c + 1) � a log2, and xp/ tm0+a log2. Therefore,

the population dispersal depends on the sensitivity a. For low
values of a the dispersal is mostly diffusive, while for high levels
of a the dispersal has a super-diffusive behavior.

4. b � c: for this case xp/ tm0+a log(b/c), and the population has a
super-diffusive behavior.

Therefore, c characterizes a crossover value for b that separates
two distinct behaviors. For b < 30, the dispersal is mostly due to
normal diffusion processes, and for b > 30, it has super-diffusive
dispersal due to resource depletion effects.

Although we have focused on the movement of a population
with individuals released near the centre of a region, we may also
ask as to the behavior of a spatially solutions. Appendix B shows
that the spatially solutions are stable to perturbations. In other
words, the resource depletion effects will not lead to local
aggregations in space.

4. Discussion

In this work we propose a model for the dispersal of
populations of many individuals randomly exploring one-
dimensional space and choosing their movements according to
the resource levels. We established the rules for the movement and
resource dynamics, and determined a system of partial differential
equations for the spatial redistribution of the population. The
numerical analysis of this system of equations has revealed that
the dynamics is equivalent to either normal or anomalous diffusion
(super-diffusion) depending on the strength resource depletion,
which induces an advection in the population spread.

Explicitly, we consider a population with individuals who move
via a redistribution kernel K(y � x, Dt) restricted to the vicinity of
the current location, with a preference for regions with resource
density r(x, t). The resource r(x, t) itself is consumed in visited
regions and recovers according to a Poisson process with
parameter given by the replenishment rate (1/m). Thus, if m has
a high value, then the resource density recovers slowly. This
parameter m can be interpreted as a time for a site become
attractive again. Note that, with this model, individuals of this
population seek to move to nearby positions, but move away from
regions that have been recently exhausted.

We have translated the dynamic rules into a continuum model
approach. The resource density r(x, t) is described by Eq. (2), and
the population density u(x, t) is given by Eq. (3). Eq. (3) has a
normal diffusion term and a term that contains an advective flow
due to resource depletion. This term reveals that the population
disperses away from regions with exhausted resources, expanding
the explore new locations.

To evaluate our model, we have reduced the number of
parameters by nondimensionalization and obtained the system
given by Eqs. (8) and (9). This system has only one parameter, b,
which characterizes the per capita rate of resource consumption
per unit resource. Due to the intractability of an analytical
approach, we have performed a numerical study and a stability
analysis shown in Appendix B. We used the MATLAB built-in solver
“pdepe” (Shampine and Reichelt, 1997) to evaluate the qualitative
features of our model.

Our results show that both the reach and the spread pattern of
the spatial distribution of the population depend on b (Eq. (7)).
The analyzed quantity was the population reach xp which
increases with time according to a power law. The characteristic
exponent m of this power law shows that for small values of b, the
population disperses mainly by normal diffusion. For high values
of b, the dispersal is given by an anomalous diffusion, the super-
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diffusion. An empirically derived connection between m and b is
given in Eq. (11), and the implications for population reach are
given by Eq. (12). Eq. (12) also includes two other characteristic
parameters: a and c. The first represents the sensitivity of the
resource effect. Biologically, it could be used to distinguish
between animals species. The second, gives a crossover value
for b that separates the dispersal behavior in diffusion and super-
diffusion.

The classical diffusion occurs as described by the Gaussian
dispersal term, whereas super-diffusion is induced by the resource
depletion. Note that the resource effects occur only with respect to
the movement of the population. Patterns of super-diffusion
redistribution are also found through the use of other dispersal
kernels, such as Levy flights (Viswanathan et al., 1999, 2011) which
are distribution kernels with heavy tails. Other dynamics that
show anomalous diffusion are given by models with non-
Markovian random walks (Majumdar et al., 2015; Serva, 2014;
Choi et al., 2012; Boyer and Romo-Cruz, 2014; Schutz and Trimper,
2004; Cressoni et al., 2007; Borges et al., 2012). However, our paper
is the first that we know of to provide a plausible model for super-
diffusion arising from the interplay between animal movement
and resource depletion.

We show how, in the presence of resource dynamic, the
individuals of a population need only search their neighborhood
locally, and still can have super-diffusive movement. Further, the
slower the recover of resource (larger m), the more super-diffusive
the population dispersal. By way of contrast, when there is rapid
recover of the resource, the normal diffusion prevails, as discussed
previously.

This behavior of avoiding sites with resource depletion as we
propose here is reasonable for most foraging species, but has also
been specifically reported for species such as black-tailed godwits
(Lourenço et al., 2010). Some animal species can perceive
variations in the site quality using prior knowledge (Dias et al.,
2009). We could assume that, for species that move widely (Dias
et al., 2009), some spatial memory could explain this behavior and
our quantity r could possibly be understood in the context of a
global spatial memory w of patch depletion, given by w ¼ 1 � r. As
discussed by Merkle et al. (2014) and Winter (2005), spatial
memory can also relate to the temporal variability of the
environment. Future work could relate spatial memory with
resource depletion as a way to translate foraging decisions from
individuals to a population level. At the individual level, work with
bats in Winter (2005) shows how they use the memory of visited
feeder sites (with resource depletion) to decide their movement
and avoid depleted feeder sites. Future work could also includes
incorporating different types of site quality into movement rules.
One way to do, so, could be based on the dynamics presented by
Bhat et al. (2017a,b), where individuals move according to a marker
(greed) which can be understood as patch resource quality varying
from preferable to avoidable. Lastly, an expansion to two
dimensional system would make the model closer to real
landscapes.

Finally, our work shows how the interplay between resource
depletion and movement can induce different patterns of space
use and population spread. Our model is theoretical, but only
requires a single parameter, b, per individual rate of resource
depletion. More complex models would have additional param-
eters, but would allow for a stronger connection to experimental or
field studies.
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Appendix A. Development of the population dynamics

We consider a population of many individuals exploring a
disordered one-dimensional space. The probability of moving from
a site at y to another at x is proportional to

1. the localized dispersal kernel K(y � x;Dt), that characterizes a
localized random search and to

2. the resource density r(x, t) at x. If r(x, t) is high the probability of
visiting this site must be high, otherwise, the probability is low.

Therefore, the probability is

Pðy ! xÞ ¼ Kðy � x; DtÞrðx; tÞ
N ðy; DtÞ ; ðA:1Þ

where

N ðy; DtÞ ¼
X
j2V

Kðy � xj; DtÞrðxj; tÞ ðA:2Þ

is the normalization coefficient, such that
P

i2VP(y ! xi) = 1, with
V a local spatial domain where the walker performs a random
search for x. This coefficient is necessary, because at each step the
transition probability varies according to the resource density
r(x, t).

Considering this situation, for one individual performance, we
describe the probability of finding the individual at x after a time
interval Dt by the master equation

uðx; t þ DtÞ ¼
X
i2V

Kðyi � x; DtÞrðx; tÞuðyi; tÞ
N ðyi; DtÞ

¼ rðx; tÞ
X
i2V

Kðyi � x; DtÞuðyi; tÞ
N ðyi; DtÞ :

ðA:3Þ

For an average density, it means for several trajectories of many
individuals moving independently, we can take the continuum
limit on the space, and write

uðx; t þ DtÞ ¼ R
V

Kðy � x; DtÞrðx; tÞR
VKðy � j; DtÞrðj; tÞdjuðy; tÞdy

¼ rðx; tÞRV Kðy � x; DtÞuðy; tÞR
VKðy � j; DtÞrðj; tÞdjdy;

ðA:4Þ

where the integration on y is also on a domain size V. For
simplicity, let us use a truncated dispersal kernel with non-zero
values only inside the domain V, so that

uðx; t þ DtÞ ¼ rðx; tÞ
Z 1

�1

Kðy � x; DtÞuðy; tÞR1
�1 Kðy � j; DtÞrðj; tÞdjdy: ðA:5Þ

Analyzing the bottom integral using z = y � j ) j = y � z ) z 2
[1, � 1], and dz =� djR1
�1 Kðy � j; DtÞrðj; tÞdj ¼ R�1

1 Kðz; DtÞrðy � z; tÞð�dzÞ
¼ � R�1

1 Kðz; DtÞrðy � z; tÞdz
¼ R1

�1 Kðz; DtÞrðy � z; tÞdz
¼ ½R1

�1 Kðz; DtÞdz�rðy; tÞ � ½R1
�1 zKðz; DtÞdz� @rðy; tÞ

@y

þ R1
�1

z2

2
Kðz; DtÞdz

� �
@2rðy; tÞ
@y2

þ h:o:t:

where we have used a Taylor series expansion in the last line.
Dropping the higher order terms, we obtain an approximation for
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the bottom integral:Z 1

�1
Kðy � j; DtÞrðj; tÞdj � rðy; tÞ

þDt �f1ðDtÞ@rðy; tÞ
@y

þ f2ðDtÞ@
2rðy; tÞ
@y2

" #
; ðA:6Þ

where

f1ðDtÞ ¼ 1
Dt

Z 1

�1
zKðz; DtÞdz ðA:7Þ

f2ðDtÞ ¼ 1
2Dt

Z 1

�1
z2Kðz; DtÞdz; ðA:8Þ

and

lim
Dt!0

f1ðDtÞ ¼ M1 � first infinitesimal moment: ðA:9Þ

lim
Dt!0

f2ðDtÞ ¼ M2 � second infinitesimal moment: ðA:10Þ

Substituting Eq. (A.6) in (A.5)
(A.11)
Using ‘ = y � x ) y = ‘ + x ) ‘ 2 [�1, 1] and d ‘ = dy:

uðx; t þ DtÞ � rðx; tÞ R1
�1 Kð‘; DtÞgð‘ þ x; DtÞd‘

¼ rðx; tÞ
(
½R1

�1 Kð‘; DtÞd‘�gðx; tÞ þ ½R1
�1 ‘Kð‘; DtÞd‘�@gðx; tÞ

@x

þ
Z 1

�1

‘2

2
Kð‘; DtÞd‘

� �
@2gðx; tÞ
@x2

þ h:o:t:

)

¼ rðx; tÞgðx; DtÞ

þ Dt f1
@gðx; DtÞ

@x
þ f2

@2gðx; DtÞ
@x2

þ 	 	 	
" #)

: ðA:12Þ

We rewrite g(x, Dt) to leading order in Dt using

ð1 þ eÞ�1 � 1 � e þ Oðe2Þ, so that

gðx; DtÞ � uðx; tÞ
rðx; tÞ 1 þ Dt

rðx; tÞ �f1
@rðx; tÞ
@x

þ f2
@2rðx; tÞ
@x2

" #)�1

� uðx; tÞ
rðx; tÞ þ

uðx; tÞDt

rðx; tÞ2
f1
@rðx; tÞ
@x

� f2
@2rðx; tÞ
@x2

" #
:

ðA:13Þ
Then, considering only the first order terms, we obtain

uðx; t þ DtÞ � uðx; tÞ þ Dt
uðx; tÞ
rðx; tÞ f1

@rðx; tÞ
@x

� f2
@2rðx; tÞ
@x2

" #

þDt rðx; tÞ f1
@
@x

uðx; tÞ
rðx; tÞ

� �
þ f2

@2

@x2
uðx; tÞ
rðx; tÞ

� �" #
:

ðA:14Þ
Using

@
@x

uðx; tÞ
rðx; tÞ

� �
¼ 1

rðx; tÞ
@uðx; tÞ
@x

� uðx; tÞ
rðx; tÞ2

@rðx; tÞ
@x

;

we obtain

uðx; t þ DtÞ � uðx; tÞ þ Dtf1
@uðx; tÞ
@x

� Dt
uðx; tÞ
rðx; tÞ f2

@2rðx; tÞ
@x2

�2Dt
uðx; tÞ
rðx; tÞ f1

@rðx; tÞ
@x

þ Dt rðx; tÞf2
@2

@x2
uðx; tÞ
rðx; tÞ

� �
: ðA:15Þ

For the second derivative we use

@2

@x2
uðx; tÞ
rðx; tÞ

� �
¼ 1

rðx; tÞ
@2uðx; tÞ
@x2

� uðx; tÞ
rðx; tÞ2

@2rðx; tÞ
@x2

� 2

rðx; tÞ2
@uðx; tÞ
@x

@rðx; tÞ
@x

þ 2uðx; tÞ
rðx; tÞ3

@rðx; tÞ
@x

� �2
:

Then

uðx; t þ DtÞ � uðx; tÞ þ Dtf1
@uðx; tÞ
@x

þ Dtf2

(
@2uðx; tÞ
@x2

þ 2uðx; tÞ
rðx; tÞ2

@rðx; tÞ
@x

� �2

�2uðx; tÞ
rðx; tÞ

@2rðx; tÞ
@x2

� 2
rðx; tÞ

@uðx; tÞ
@x

@rðx; tÞ
@x

)
:

ðA:16Þ
Dividing by Dt and taking the limit Dt ! 0, using Eqs. (A.9) and
(A.10) as well, we obtain the approximation:

@uðx; tÞ
@t

¼ @uðx; tÞ
@x

M1 � 2M2

rðx; tÞ
@rðx; tÞ
@x

� �
þ M2

@2uðx; tÞ
@x2

þ2M2
uðx; tÞ
rðx; tÞ2

@rðx; tÞ
@x

� �2
� 2M2

uðx; tÞ
rðx; tÞ

@2rðx; tÞ
@x2

: ðA:17Þ

We rewrite the terms to get

(A.18)

where M1 stands for the preference for one direction, and M2 is the
diffusion coefficient. Note that in the advective term of this
equation there is a nonlinear coupling due to the resource density r.
Besides, this equation has an advection up gradients of logr(x, t).
Observe that @x logr(x, t) is some measure of locations with
resource, since it represents the relative variation of space with
resource, @xr/r.
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Appendix B. Linear stability analysis

To evaluate our problem, we consider zero flux boundary
conditions and a given initial condition. Since we are concerned
with the spatial-driven instability, we first determine the
conditions for a linearly stable state in the absence of any spatial
variation. Therefore, from Eq. (8) we obtain for the steady state
(u, r) = (u0, r0):

@r0
@t

¼ �bu0r0 þ ð1 þ r0Þ ¼ 0

) r0 ¼ 1
1 þ bu0

:
ðB:1Þ

This gives us the relation between u and r at the steady state. Now,
we linearize the original problem, Eqs. (8) and (9), about the steady
state (u0, r0). Let us assume a small perturbation |u1|, |r1| � 1, with:

ð r1
u1

Þ ¼ ð ruÞeltþikx; ðB:2Þ

where l is the eigenvalue which determines the temporal
variation, and k is an eigenvalue that can be understood in the
context of wavenumber. Thus, linearizing the original set of
equation using with r = r0 + r1 and u = u0 + u1, we obtain:

@u1

@t
¼ �2

@
@x

ðu0 þ u1Þ @@xlogðr0 þ r1Þ
� �

þ @2u1

@x2
: ðB:3Þ

Evaluating the derivative of the log function, we got:

@
@x

logðr0 þ r1Þ ¼ 1
r0 þ r1

@r1
@x

; ðB:4Þ

we can rewrite

1
r0 þ r1

¼ 1
r0

1
1 þ r1

r0

¼ 1
r0

1 � r1
r0

þ 	 	 	
� �

; ðB:5Þ

therefore

@
@x

logðr0 þ r1Þ ¼ 1
r0 þ r1

@r1
@x

¼ 1
r0

1 � r1
r0

þ 	 	 	
� �

@r1
@x

� 1
r0

@r1
@x

;

ðB:6Þ

where we keep only the first order terms. So, Eq. (B.3) becomes

@u1

@t
� �2

@
@x

ðu0 þ u1Þ1r0
@r1
@x

� �
þ @2u1

@x2

� �2u0
1
r0

@2r1
@x2

þ @2u1

@x2

� � 2u0

r0

� �
@2r1
@x2

þ @2u1

@x2
: ðB:7Þ

For the r equation, we obtain

(B.8)
where again, we keep only the first order terms. In the matrix
formalism:

@
@t

r1
u1

� �
¼

�ðbu0 þ 1Þ �br0
�2u0

r0

� �
@2

@x2
@2

@x2

2
4

3
5 r1

u1

� �
: ðB:9Þ

Using Eq. (B.2) we obtain:

@
@t

r1
u1

� �
¼ @
@t

r
u

� �
expðlt þ ikxÞ ¼ l

r1
u1

� �
@2

@x2
r1
u1

� �
¼ @2

@x2
r
u

� �
expðlt þ ikxÞ ¼ �k2 r1

u1

� � ðB:10Þ

Therefore,

(B.11)

where A is the stability matrix. We have to analyze the stability
condition through the eigenvalues l of A, namely, solving
|A � lI| = 0.

(B.12)

Linear stability is guaranteed if Re l < 0 (Murray, 2003). Thus,
analyzing Eq. (B.12), for stability we must have tr(A) < 0 and det
(A) > 0. Therefore, the stability conditions are

�ðbu0 þ 1 þ k2Þ < 0: ðB:13Þ

ð3bu0 þ 1Þk2 
 0; ðB:14Þ
where the equality occurs in the absence of any spatial effects,
namely, if k2 = 0. Note that, since b > 0 and u0> 0, these conditions
are always satisfied. It means the resource consumption does not
destabilize the spatially uniform stationary state.
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